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EXAMPLES OF BIAS IN MULTIPLE REGRESSION COEFFICIENTS DUE TO NON 

CONSTANT EXPOSURE EFFECTS OR VARIATION IN TIMING OF EXPOSURE 

Finding clinically meaningful windows of vulnerability is a goal of this type of research. 
However, as the figures below show, predefining windows from the outset coupled with 
variations in the sampling times, may hinder our ability to detect such windows.  
 

 
 

Figure shows non constant exposure levels (solid blue curve) 
within a time window (delineated by black vertical dashed 
line). For measures taken near the midpoint of the time 
window (pink dashed line) the observed measure will 
approximately represent average exposure within the 
window (A+B)/2. For all other times, the measurement over- 
or underestimates average exposure. Depending on the 
nature of the exposure pattern (e.g., increasing instead of 
decreasing), measurements taken after the midpoint of the 
time window may underestimate the average exposure. If the 

pattern was known, then the error in exposure measurement could be corrected. This error will 
introduce measurement error bias in regression coefficients. Since the error could potentially be 
differential, for example, when more highly exposed participants are also measured later in the 
time window, the bias in regression coefficients may not always be toward zero. 
 
 

 
Supplemental Material, Figure 2.  Figure shows a non constant exposure effect (solid blue 
curve) within a time window (delineated by black vertical dashed line), and two different 
distributions of sampling times (red vertical dashes on time axis). Left panel shows that under 
uniform distribution of sampling times, the estimated average effect (horizontal, pink dashed 
line) would be somewhere between the maximum and minimum effect within the window. 
Middle panel shows that if the distribution of sampling times is shifted towards an end of the 
window, then, in this case, the estimated effect would underestimate the average effect within the 
window. Right panel shows an extreme example where true effect is non-zero only for 
approximately 1/3 of the predefined time window, but, under skewed sampling times within the 
predefined window, the estimated effect is close to zero.  

Supplemental Material, Figure 1 
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MODEL FITTING IN SAS 
 
We outline the fitting procedures for each of the methods discussed in the parent paper. We also 
discuss extensions to the models presented; namely, including covariates in the exposure models 
for Methods 3 and 4 (e.g. lead-glazed ceramics use), and incorporating categorical health 
outcomes for Method 4. 

Data Layout 
The data available for each individual are: the health outcome Yi, exposure measurements 
Xi=(Xi1,…,XiKi) taken within time windows 1,…,K, at actual (continuous) Time = t1,…,tKi. 
Covariates for the outcome model are denoted Zi in the parent paper. Here in the supplemental 
material, we separate these covariates into two sets: ZYi, and ZCi.  Covariates ZYi would be those 
that are independent predictors of the outcome, but not confounders.  Covariates that are 
predictors (or common causes) for both Y and X (and therefore confounders), are called ZC. In 
the lead example, maternal education could predict both MDI24 and maternal exposure, hence it 
would be a covariate in ZC; other variables, for example, measures of the home environment, 
which would predict MDI24, but would not be a cause of exposure, would belong to ZY. Other 
covariates may also be available, for example, variables that may predict the exposure. For 
example, use of lead glazed ceramics in the lead example would be a predictor of exposure, but 
would not (directly) influence MDI24. We call these ZX, since they predict exposure, X. The 
extra sets of covariates ZX will be used in Model 3 and 4. The data needs to be organized in 
various ways depicted in Supplemental Material, Figure 2, depending on the estimation method 
used.  
 

ID Y X1 X2 … XK ZC ZY ZX Time1Time2 … TimeKComplete
i Y i X i1 X i2 X iK ZCi Z Yi Z Xi t i1 t i2 t iK
j Y j . . X jK ZCj Z Yj Z Xj . . t jK

ID Y X T ZC ZY ZX Time Window ID Resp Outcome Exposure Time ZC ZY ZX
i Y i X i1 1 Z i Z Yi Z Xi t i1 1 i Y i 1 0 99 Z i Z Yi 99
i Y i X i2 2 Z i Z Yi Z Xi t i2 2 i X i1 0 1 t i1 Z i 99 ZXi
: : : : Z i : : : i X i2 0 1 t i2 Z i 99 ZXi
i Y i X iK K Z i Z Yi Z Xi t iK K : : : : : Z i 99 :

i X iK 0 1 t iK Z i 99 ZXi

Wide Layout

Layout 2Layout 1

1
0

Supplemental Material, Figure 3. Data Layout for individual i (and j) used in various 
estimation approaches.  In the Wide Layout, individual j has some exposure measures missing, 
hence the variable "Complete" is coded as 0; since individual i has complete data, then the 
indicator variable is coded as 1. In Layout 2, "Outcome" and "Exposure" are dummy variables 
indicating if the variable Resp is the health outcome Y or an exposure X; the values 99 can be 
substituted for any other number except ".", since they are not actually used in the computations. 
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Method 1:  Separate and Simultaneously Adjusted Linear Regression Models 
Fitting separate and simultaneously adjusted regressions only requires standard use of linear 
regression. For example, for the first exposure window, the SAS code would be: 

 

proc reg data=WideLayout; 
title "Regression for window 1"; 
model Y = X1 ZC ZY ; 
run; 
 

proc reg data=WideLayout; 
title "Simultaneously adjusted regression"; 
model Y = X1 X2 … XK ZC ZY ; 
run; 

Method 2:  Multiple Source Predictors with GEE 
The objective is to jointly estimate the exposure associations, β1k, from the regressions Yi=β0k+ 
β1kXki+ β2kZi+εki, at each time window k=1,2,…,K (where Zi are covariates ZYi, and ZCi, and β2k 
is a 1 x p row vector).  These regressions can be estimated by implementing a non-standard 
version of generalized estimating equations (GEE) where an artificial multivariate outcome is 
created for each individual by repeating the outcome, Yi, K times (Horton et al., 1999; Litman et 
al., 2007a; Pepe et al., 1999). In matrix notation, the model is )
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To fit the model in SAS, the data for the for ith individual should be formatted in "long 

format" with K records for each individual, one for each exposure window, and copies of the 
outcome and covariates repeated for each exposure window as shown in Layout 1 in 
Supplemental Material, Figure 3. The exposure coefficients for each exposure window can then 
be estimated with SAS PROC GENMOD, with a working independence assumption and model 
based standard errors (Litman et al., 2007b): 

proc genmod data=DataLayout1; 
title "Multiple informant with GEE"; 
class id Window; 
model Y=Window X*Window ZC*Window ZY*Window / noint; 
repeated subject=id / type=ind modelse; 
run; 

Alternatively, empirical standard errors (Pepe et al., 1999) may be used by deleting the option 
modelse from the repeated statement. Tests of the differences in exposure (and covariate) 
associations across time windows can be obtained by adding the "main effects" of X (and Z) to 
the model, and adding the type3 option. The tests for the interactions will have K-1 degrees of 
freedom, and the p-values can be obtained from the type III tests output.   In the case of missing 
data, the option withinsubject=Window is needed in the repeated statement. 
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Method 2:  Multiple Source Predictors with ML 
A key difference between GEE and ML estimating approaches for multiple source predictors is 
the ability of the ML approach to incorporate missing data.  The general idea is to first estimate 
the joint distribution of the outcome and exposure measures (Yi, Xi1,…,XiK) given covariates Zi 
(both ZYi, and ZCi), and subsequently find the conditional mean of Yi given each Xij. For example, 
for E(Yi | Xij, Z i)= β0j+β1j Xij + β2j Z i, the estimate of β1j is given by Cov(Yi, Xij|Z i)/Var(Xij|Z i), 
and the estimate of β0j  is given by E(Y|Z i) -β1j*E(Xij|Z i).  
 

Litman et al. (2007a) describe an EM algorithm to find ML estimates in the case when 
two predictors are available (e.g., two exposure windows).  They implemented the algorithm in 
the R software, but note that their approach to developing the algorithm becomes increasingly 
complex when there are more multiple source predictors (i.e., more exposure windows), 
particularly in the presence of missing data and constraints in the variance-covariance matrix. 
Using the macros that appear at the end of this Supplemental Material, the approach can also be 
implemented in SAS, where it is easier to include more exposure windows.  We give the case 
when the regression coefficients may differ across three exposure windows, but the set up can be 
easily extended to include more predictors. When the model is unconstrained, i.e., assuming 
outcome-exposure associations differ across windows, the macros would be used as follows to 
obtain estimates and bootstrap standard errors: 

title "Multiple informant with MLE, assuming different regression 
coefficients across windows"; 
 
%MultipleInformantMLE(data=WideLayout, out=FullModel,  
                    X1=X1, X2=X2, X3=X3, Y=Y, id=ID, covariates= ZY*T); 
 
%BootstrapForStandardErrors(BootstrapReplicates=1000, data= WideLayout,  
                      results=BootstrapResults, 
                      N_complete=120,  N_missing=49, NfullSample=169, 
                      variables=  Y X1 X2 X3 ZC ZY ZX , 
                      strata=Complete, X1=X1, X2=X2, X3=X3, Y=Y, id=ID, 
                      covariates= ZY*T); 
 
%SummaryBootstrap( actualresults=FullModel, results=BootstrapResults ,  
                      finalresults=FinalFullModel    ); 

 
The output from the macro prints the estimated parameters, bootstrap standard errors and 
confidence intervals.  
 

The following code is needed to estimate the model when constraints are imposed (i.e., 
correlation between outcome and exposure is the same across all windows).  The output of the 
MultipleInformantMLEConstraints macro includes a likelihood ratio test to compare the 
constrained to unconstrained model. 

title "Multiple informant with MLE, assuming the same correlation 
between exposure and outcome across windows"; 
 
%MultipleInformantMLEConstraints(data=WideLayout, out=FullModel,  
               X1=X1, X2=X2, X3=X3, Y=Y, id=ID, covariates= ZY*T, 
                type=lin(8), LinCovParms=LinCovParms8); 
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Method 3:  Individual's patterns of exposure in relation to outcome 
The third method can be estimated in SAS PROC NLMIXED.  The code below shows a sample 
that follows the example in the paper, where the only subject specific parameters are the 
intercept and linear rate of change for each individual.  
 

proc nlmixed data=DataLayout2; 
title "Joint estimation for Method 3"; 
title2 "subject-specific random slope and intercept for exposure"; 
parms –starting values-; 
 

theta0i= mutheta0 + errtheta0i;      *features are population mean; 
theta1i= mutheta1 + errtheta1i;      *plus individual variation;  
 

meanY = B0 + B1*theta0i  + B2*theta1i + B3*ZY + B4*ZC; 
loglikOutcome = (-1/2)*((Resp - meanY)/sigma)**2 - log(sigma); 
meanXik = theta0i + theta1i*time ; 
loglikExposure = (-1/2)*((Resp - meanXik)/tau)**2 - log(tau); 
model Response ~ general(Outcome*loglikOutcome +   
                                        Exposure*loglikExposure); 
random errtheta0i errtheta1i ~ normal([0 , 0], 
                               [omega1**2, 
                               omega12  , omega2**2]) subject=ID; 
run; 

 
One will usually need to obtain starting values for the parms statement.  For example  
(parms B0=0 B1=1 B2=0 B3=0 B4=0 mutheta1=0 mutheta2=0 omega1=1 omega2=1 
omega12=0). Improved starting values for mutheta1, mutheta2, omega1, omega2, and 
omega12 can be obtained by first fitting a random effects model to the exposure data only (i.e., a 
repeated measures model for the X's using, for example, PROC MIXED). 

It may be of interest to include covariates that predict exposure features. For example, we 
included use of lead glazed ceramics at baseline as a predictor of the intercept θ0i (See 
Supplementary Table 3). Modeling the features as dependents on covariates, e.g. θ0i = 
θ0+γZX+δ0i, may be useful in helping better predict the exposure features for participants with 
missing data; information across participants with similar characteristics can be borrowed by 
using predictors for the features. This can be easily accomplished by modifying the statements 
for theta0i and theta1i 

 
theta0i=  theta0 + gamma0*ZX +errtheta0i;  * predicting features       ; 
theta1i=  theta1 + gamma1*ZX +errtheta1i;  * with time fixed covariates;  

 
Note that the total variation in the random effects θ0i is still used in the outcome for the model, 
i.e. the statement meanY = B0 + B1*theta0i  + B2*theta1i + B3*ZY + B4*ZC; remains 
unchanged. 

Furthermore, including non linear exposure features may be of interest. For example, 
exposure over time as a quadratic function could be possible, i.e. Xik = θ0i +θ1i tik +θ2i tik

2 + εik . 
This is only a possibility if most participants have 4 or more exposure measures.  Other semi- or 
nonparametric shapes would also be possible. However, the number of exposure measures per 
participant would have to be greater.   The model for the outcome would be Yi = β0 + β11 θ0i + 
β12 θ1i + β13 θ2i +  β2 Zi+ εi.  Interpreting this type of model could be done by graphing the 
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estimated exposure patterns annotated with outcome (See Supplemental Material, Figure 5).  
Coding-wise, this is straightforward to implement, the necessary changes would be: 

 
theta2i=  theta2 + errtheta2i;                       *add this line; 
 

*modify the following lines; 
 

meanXik = theta0i + theta1i*time + theta2i*time*time;  
 

meanY = B0 + B1*theta0i  + B2*theta1i + B3*theta2i + B4*ZY + B5*ZC; 
 

random errtheta0i errtheta1i errtheta2i ~ normal([0 , 0, 0], 
                        [omega1**2, 
                         omega12  , omega2**2 
                         omega13  , omega23, omega3**2]) subject=ID; 

 
Alternatively, for interpretation, it may be more advantageous to transform the estimated 

population coefficients into a coefficient function w(t) that measures the relative effect of an 
exposure increment at time t compared to other times. The function w(t) is constructed as  
w(t) = β11 + β12 t + β13 t2 (see James 2002 for a full discussion on why w(t) is estimated in this 
manner). For the analyses in the parent paper, subject-specific exposure patterns were linear, 
hence w(t) was linear, w(t) = β11 + β12 t  (see Supplemental Material, Figure 4).  

 
 

Estimated weight 
function w(t), with 
point wise confidence 
intervals, for  
Method 3 analysis in 
parent paper. Wide 
confidence intervals 
due to high standard 
error of slope parameter 
β12. 
 
 
 
 

 
Even if person-specific non linear patterns cannot be modeled (e.g., due to limited sample 

size per participant), including a population average non-linear pattern may be advantageous to 
improve model fit. In the lead example we included a population average U-shaped curve by 
modeling i.e. Xik = θ0i +θ1i tik +θ2 tik

2 + εik (note θ2 is not random). See Supplemental Material, 
Table 3. 
 

Supplemental  
Material, Figure 4 
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Method 4: Population patterns of exposure given the outcome 
The code below shows how to estimate the fourth approach in SAS PROC MIXED. The 
approach uses the data formatted as in Layout 1, with an additional variable Yc (Y_c).  The 
variable Y_c are the residuals obtained by fitting a model to the outcome, where only the 
covariates (and not exposure X) are used as predictors.  

 
proc mixed data=DataLayout1; 
title "Quadratic model with continuous residual interaction"; 
class ID; 
model X = time time*time Y_c time*Y_c time*time*Y_c /solution; 
random int / subject=ID  s; 
estimate "Exposure when outcome is 10 points above the mean (Y_c = 10)   
          and time is 7 weeks "  
    intercept  1 time 7  time*time 49  
    Y_c   10 time*Y_c 70  time*time*Y_c 490 / cl ; 
estimate "Exposure when outcome is 10 points below the mean (Y_c =-10) 
and time is 7 weeks "  
    intercept  1 time 7  time*time 49  
    Y_c   -10 time*Y_c -70  time*time*Y_c -490 / cl ; 
run; 

 
The structure of the estimate statement is 
 

Estimate "Exposure when outcome is NUM1 points above  
the mean (Y_c = NUM1)  and time is NUM2 weeks " 
      intercept  1 time    NUM2  time*time NUM2*NUM2    
      Y_c   NUM1 time*Y_c NUM1*NUM2    

time*time*Y_c  NUM2*NUM2*NUM1 / cl ; 
 

Repeated applications of the estimate statement at, for example, every week, NUM2=(0, 1, …., 
40), give the estimates and confidence limits used to construct Figure 1 of the paper. 

 

Covariates can be included in the model for the exposure c

iikikik YtftfX )()( 10 += + γCZC + γXZX + 
δik. These covariates would be included to help reduce the error variance, and therefore possibly 
reduce the variance of the estimated f0(t) and f1(t).  
 

model X = time time*time Y_c time*Y_c time*time*Y_c ZC ZX /solution; 

 
In the lead example, we included use of lead glazed ceramics as an example. The results are 
presented in Supplemental Material, Table 4 and Supplemental Material, Figure 6.   
 
If the outcome Y was categorical (e.g., cases and controls), constructing residuals Yc would not 
necessarily be straightforward. Instead one can simply use the observed Y. In this case, including 
covariates ZC (i.e., confounders) in the exposure model becomes necessary to avoid confounding. 
The modifications to the code would be to include Y in the class statement.
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SENSITIVITY ANALYSES 
We present results from alternative analyses, namely including child blood lead at 24 months 
into all analyses in the parent paper, and provide examples of including covariates in exposure 
model for Methods 3 and 4. 
 
Methods 1 and 2.  It is possible to include child blood lead as a confounder or as another 
window in methods 1 and 2 (Supplemental Material, Tables 1 and 2). Including it as a 
confounder has some potential advantages and limitations. A potential advantage is that the 
coefficients for the exposure effects during the prenatal windows can be interpreted as 
independent effects of prenatal exposure after accounting for early childhood exposure. The 
primary limitation is that doing this would not always be possible because high correlations 
between exposures outside the windows of interests and the exposure window being evaluated 
may actually preclude valid interpretations of regression coefficients (Woodruff et al., 2009). In 
this case, correlations between prenatal and child blood lead are relatively low (0.17, 0.24, 0.27).  
In all models shown in Supplemental Material, Tables 1 and 2, child blood lead was not a 
significant predictor of mental development; however the direction of association was always 
negative, as would be expected.  
 

Supplemental Material, Table 1: Results of Methods 1 and 2 including child blood lead at 24 months as a 
confounder 

 Multiple Regression Multiple Informants Approach (N=169) 

 Simultaneous Adj.a 
Separate 

Regressions b GEE  MLE 
Trimester β 95% CI β 95% CI β 95% CI β 95% CI 

1 -5.47 -10.3 -0.67 -3.39 -6.69 -0.1 -3.39 -6.75 -0.04 -4.03 -7.61 -0.45 
2 1.12 -5.16 1.12 -2.89 -6.76 0.98 -2.89 -6.75 0.96 -2.77 -6.98 1.44 
3 1.54 -3.45 1.54 -1.88 -5.46 1.7 -1.88 -5.43 1.67 -1.63 -4.8 1.54 

pint n/a n/a 0.72 0.12 
a N=120 
bFor Trimester 1, N=139; Trimester 2, N=159; Trimester 3, N=146 

 
Supplemental Material, Table 2: Including child blood lead at 24 months as another window 

 Multiple Regression Multiple Informants Approach (N=169) 

 Simultaneous Adj.a 
Separate 

Regressions b GEE  MLE 
Timing β 95% CI β 95% CI β 95% CI β 95% CI 

T1 -5.47 -10.3 -0.67 -2.74 -5.78 0.29 -3.14 -6.33 0.06 -4.14 -7.63 -0.65 
T2 1.12 -5.16 1.12 -1.37 -4.81 2.07 -3.00 -6.81 0.81 -3.01 -7.22 1.20 
T3 1.54 -3.45 1.54 -1.15 -4.20 1.90 -2.70 -5.62 0.22 -1.91 -5.05 1.23 

24M -1.02 -4.27 2.23 -1.19 -3.87 1.49 -1.17 -3.56 1.22 -1.36 -3.57 0.86 
pint n/a n/a 0.86 0.08 

a N=120 
bFor Trimester 1, N=151; Trimester 2, N=159; Trimester 3, N=146, for 24months, N=169 
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Method 3.  Supplemental Material, Table 3 shows the model parameters from implementing 
Method 3 where we: 1) included a fixed quadratic effect of time in the exposure model 2) 
included ceramics use at baseline as a predictor of θ0i, and 3) included child blood lead in 
outcome model. As compared to the analysis in the main paper, the effect of blood lead level 
early in pregnancy (θ0i) was slightly weaker (β = -1.93, SE=1.14, p=0.09 vs β = -2.11, SE=1.08, 
p=0.05); this reflects that although it is statistically significant,  baseline ceramics leads to no 
improvement in quantifying θ0i. Supplemental Material, Figure 5 shows exposure patterns for 
two individuals and their outcomes. 
 
Supplemental Material, Table 3. Including fixed quadratic effect of time in exposure 
model and child blood lead in outcome model. 
Exposure Model Estimate SE p 
  θ0 (Average Intercept) 2.00 0.07 <.0001 
  θ1 (Average change per 12 weeks) -0.36 0.09 <0.01 
  θ2  (Quadratic term) 0.11 0.03 <0.01 
  γ (Effect of baseline ceramics use on θ0i) 0.04 0.02 0.01 
  Random Intercept SD 0.49     
  Random Slope SD 0.19     
  Correlation of Random Int. (θ0i) and Slope (θ1i) -0.58     
  Residual SD 0.26     
Outcome Model       
  Blood lead level at week 7 (θ0i, Random Intercept) -1.93 1.14 0.09 
  Changes in blood lead level (θ1i , Random Slope) 1.07 1.61 0.51 
  Maternal Age (per 5yrs) 2.93 0.79 <0.01 
  IQ (per 10 pts) 0.68 0.65 0.29 
  Child's Gender -5.12 1.70 <0.01 
              Weight at 24 Months -2.08 0.94 0.03 
              Height Z-score at 24 Months 2.72 1.17 0.02 
   Breast Feeding Duration (per 6mo) -0.09 0.15 0.55 

 Ln(Blood Lead) at 24 Months -0.73 1.40 0.60 
Supplemental 
Material,  
Figure 5 
 
Offspring MDI 
and exposure 
patterns for two 
participants as 
estimated from 
Method 3 
including a fixed 
quadratic effect 
of time in 
exposure model. 
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Method 4. Supplemental Material, Table 4 shows parameter estimates from method 4 after 
including child blood lead at 24 months as an outcome predictor and using time-varying 
ceramics as a prenatal exposure predictor. Supplemental Material, Figure 6 shows the relative 
exposure comparing children with low vs. high MDI24 scores. The primary difference is that the 
time at which exposure differences become non-significant is 18 instead of 17 weeks. 
 

Supplemental Material, Table 4.  Model parameter estimates after including 
time-varying ceramic use as a predictor of prenatal exposure and child's blood 
lead at 24 months as a predictor of outcome. 
 Outcome Model Estimate SE p 

  Maternal Age (5yrs) 2.77 0.81 <0.001 
  Breast Feeding Duration (6mo) -0.49 0.91 0.60 
  Maternal IQ (10 pts) 0.79 0.67 0.24 
  Child's Gender -4.23 1.79 0.02 
             Weight at 24 Months -1.66 0.68 0.02 
             Height Z-score at 24 Months 2.58 1.18 0.03 
             Ln(Blood Lead) at 24 Months -1.19 1.37 0.38 

Exposure Model       
  Average exposure pattern, f0(t)       
    Intercept, α00 3.00 0.4 <.001 
    Linear trend, α 01 -1.26 0.63 0.046 
    Quadratic trend, α 02 0.44 0.3 0.146 
  Relationship with MDI,  f1(t) a       
    Change in the intercept, α 10 -0.12 0.04 0.005 
    Change in linear trend, α11 0.11 0.07 0.098 
    Change in quadratic trend, α 12 -0.04 0.03 0.277 
  Time-varying Ceramic Use (γ) 0.04 0.01 0.004 
a H0: f1(t)=0 vs f1(t)≠0, p=0.04, H0: f1(t)=constant vs f1(t)≠constant, p=0.10 

 

Supplemental 
Material, Figure 6 
Relative exposure 
comparing those in 
the 10th percentile 
of the MDI 
distribution to those 
in the 90th 
percentile, with 
95% point wise 
confidence 
intervals. Lower 
point wise 
confidence interval 
crosses 1 at 
approximately 18 
weeks.
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SAS MACROS 
 
%macro MultipleInformantMLE(data= , out= , X1=, X2=, X3=, Y=, id=, covariates= ); 
/* 
 
data= dataset in wide layout 
out=  name of dataset to store the results 
X1=   name of variable for exposure at window1 
X2=   name of variable for exposure at window2 
X3=   name of variable for exposure at window3 
Y=    name of variable for outcome 
id=   person identifier 
covariates = list of covariates to adjust for; it must include interactions with 
      T and main effect of T, literally:  eg., covariates = T age*T 
      The variable T MUST NOT exist in the widelayout dataset, it will get constructed 
      in this macro. 
 
*/ 
 
  data ResampledEM; *need data in long format, similar to Layout 2, but with T as categorical; 
       set  &data; 
       Response = &Y;        T=0;  output;  
       Response = &X1;       T=1;  output;  
       Response = &X2;       T=2;  output;  
       Response = &X3;       T=3;  output;  
       run;  
    
  *run proc mixed to estimate the joint distribution of exposurese and outcome; 
  proc mixed data=ResampledEM method=ml covtest ; 
  title2 "proc mixed for multiple informant approach"; 
       class &id T; 
       model Response  = T  &covariates / noint s; 
       repeated T /subject=&id  type=un ; 
       ods output CovParms=CovarP(keep = estimate )  ; 
       ods output SolutionF=fixedF(keep = estimate )  ; 
  run;  
 
  *manipulate estimated covariance parameters ; 
  proc transpose data=CovarP out=transpCovarP; 
  run;  
 
  data transpCovarP; 
    set transpCovarP; 
    vary=col1;       *residual variance of outcome given covariates only; 
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 varx1=col3;  varx2=col6;  varx3=col10; *residual variances of exposure at each time window given covariates 
only; 
 covyx1=col2;  covyx2=col4; covyx3=col7;  *covariance of outcome with exposure at each window;  
 covx1x2=col5; covx1x3=col8;  covx2x3=col9;*covariance of exposure between pairs of windows; 
 corryx1=covyx1/(sqrt(vary)*sqrt(varx1));   *covariate adjusted correlations; 
 corryx2=covyx2/(sqrt(vary)*sqrt(varx2)); 
 corryx3=covyx3/(sqrt(vary)*sqrt(varx3)); 
    drop _name_ col1-col10; 
    run; 
 
  proc transpose data=fixedF out=transpfixedF; 
  run;  
 
  *manipulate estimated mean parameters ; 
  data transpfixedF; 
      set transpfixedF; 
   muy=col1;     mux1=col2;     mux2=col3;       mux3=col4; 
   drop _name_ col1-col4; 
  run; 
 
  data &out ; 
     merge transpCovarP transpfixedF; 
 
  *exposure regression coefficients for each window; 
  beta11=covyx1/varx1; 
  beta12=covyx2/varx2; 
  beta13=covyx3/varx3; 
 
  *intercepts coefficients for each window; 
  beta01=muy - beta11*mux1; 
  beta02=muy - beta12*mux2; 
  beta03=muy - beta13*mux3; 
 
  *differences in covariate-adjusted outcome-exposure correlation; 
     *between pairs of windows; 
  CorYX1_CorYX2 = corryx1 - corryx2;   
  CorYX1_CorYX3 = corryx1 - corryx3; 
  CorYX2_CorYX3 = corryx2 - corryx3; 
 
     run; 
  
 
  proc print data=&out; 
  title2 "Multiple informants estimates for each exposure window"; 
  run; 
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  proc datasets; 
    delete  TempOut fixedF transpfixedF CovarP transpCovarP ResampledEM; 
 run; 
  
%mend MultipleInformantMLE; 
 
 
/* The BootstrapForStandardErrors macro employs the resample and MultipleInformantMLE macros  */ 
%macro BootstrapForStandardErrors(BootstrapReplicates=, data= , results=,  
                           N_complete=, N_missing=, NfullSample= , variables=, strata=,  
                           X1=, X2=, X3=, Y=, id=, covariates=); 
*initialize dataset for results; 
data &results; 
set _null_; 
run; 
 
*start resampling; 
%do run = 0 %to &BootstrapReplicates; 
 
* resample wide dataset, resampled dataset is called ResampledData; 
%resample(originaldata=&data, N1=&N_complete, N2=&N_missing, Ntotal=&NfullSample, strata=&strata, variables=&variables, 
id=&id) 
 
* run MultipleInformantMLE macro ; 
%MultipleInformantMLE(data=ResampledData , out=tempresults , X1=&X1, X2=&X2, X3=&X3, Y=&Y, id=&id, 
covariates=&covariates ); 
 
*merge previous results to new results; 
data &results; 
 set &results tempresults; 
run; 
 
*delete working datasets; 
proc datasets ; 
delete tempresults ResampledData  ; 
run; 
 
*clear windows; 
dm "out;clear;log;clear;"; 
 
%end; 
%mend BootstrapForStandardErrors; 
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%macro resample(originaldata=, N1=, N2=, Ntotal=, strata=, variables=, id=); 
/*This macro resamples data for use in the bootstrap macro; it 
assumes data have some missing values in X's and/or Y. 
originaldata  =  data in wide layout; 
N1            =  number of participants with complete data; 
N2            =  number of participants with some missing data in X's and/or Y.  
Ntotal        =  sample size 
strata        =  name of variable that identifies which observations are complete 
                 i.e., the indicator variable marked 0 if data has some missing data  
                 and 1 if complete 
variables     =  list of variables necessary for the analysis, X's, Y, and Z's ,  
                 do not include variable with subject's id here 
id=           =  variable name with subject's id 
*/ 
proc sort data=&originaldata; 
   by &strata; 
run; 
 
*sample with replacement, maintain % of people with incomplete observations; 
proc surveyselect data=&originaldata  method = urs sampsize = (&N1 &N2) 
   rep=1 out=Resampled  ; 
   strata &strata; 
   id &variables; 
run; 
 
data ResampledData ; 
  set Resampled ; 
  do i = 1 to numberhits;    output;    end; 
  drop i; 
run; 
 
data fakeids ; 
   do i = 1 to &Ntotal;  *number of observations with complete covariates; 
    &id=i; output; 
  end; 
  drop i; 
run; 
 
data ResampledData ; 
  merge ResampledData fakeids ; 
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 run; 
 
proc datasets ; 
   delete Resampled fakeids; 
run; 
%mend resample; 
  
 
%macro SummaryBootstrap(actualresults= , results= , finalresults= ); 
 
proc means data=&results;   ods output summary=resultssummary;  run; 
 
proc transpose data=resultssummary out=transposresultssummary; 
run; 
 
proc transpose data=&actualresults  out=transpactual; 
run; 
 
data bootmean(rename= (col1=bootmean))  
     bootse(rename= (col1=bootse))  
     bootmax(rename= (col1=bootmax))  
     bootmin(rename= (col1=bootmin)); 
set transposresultssummary; 
if _label_="Mean" then output bootmean; 
if _label_="Std Dev" then output bootse; 
if _label_="Minimum" then output bootmin; 
if _label_="Maximum" then output bootmax; 
drop _label_ _name_; 
run; 
  
data &finalresults(rename= (col1=Estimate)); 
merge transpactual bootmean bootse bootmin bootmax; 
tstat= col1/bootse; 
bootbias= col1-bootmean; 
Pvalue = 2*(1-probnorm(abs(tstat))); 
NormalBasedCILow= col1- 1.96*bootse  ; 
NormalBasedCIHigh= col1 + 1.96*bootse  ; 
drop bootmean; 
run; 
  
proc print data=&finalresults; 
run; 
 
%mend SummaryBootstrap; 
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%macro MultipleInformantMLEConstraints(data= , out= , X1=, X2=, X3=, Y=, id=, covariates= , 
                                       type= , LinCovParms= ); 
/* 
data= dataset in wide layout 
out=  name of dataset to store the results 
X1=   name of variable for exposure at window1 
X2=   name of variable for exposure at window2 
X3=   name of variable for exposure at window3 
Y=    name of variable for outcome 
id=   person identifier 
covariates = list of covariates to adjust for; it must include interactions with 
      T and main effect of T, literally:  eg., covariates = T age*T 
      The variable T MUST NOT exist in the widelayout dataset, it will get constructed 
      in this macro. 
type= type of variance for constrained model, usually lin(#), where # is the number of  
             covariance parameters 
LinCovParms=dataset with constraints for covariance matrix. in the matrix below, the parameters 
  correlation between the outcome and exposure at each window (parameter 8) are constrained 
             to be equal 
 
data LinCovParms8;   *this data needs to be part of the work directory prior to running the macro; 
  input parm row col1-col4; 
  datalines ; 
1 1 1 0 0 0 
2 2 0 1 0 0 
3 2 0 0 1 0 
3 3 0 1 0 0 
4 3 0 0 1 0 
5 2 0 0 0 1 
5 4 0 1 0 0 
6 3 0 0 0 1 
6 4 0 0 1 0 
7 4 0 0 0 1 
8 1 0 1 1 1 
8 2 1 0 0 0 
8 3 1 0 0 0 
8 4 1 0 0 0 
        ; 
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run; 
 
This algorithm is based on the algorithims discussed in  
Lin X.H., Ryan L., Sammel M., Zhang D.W., Padungtod C., Xu X.P. (2000)  
A scaled linear mixed model for multiple outcomes. Biometrics 56:593-601. 
*/ 
 
 
 
  data ResampledEM; *need to make data into long format 
       set  &data; 
       Response = &Y;        T=0;  output;  
       Response = &X1;       T=1;  output;  
       Response = &X2;       T=2;  output;  
       Response = &X3;       T=3;  output;  
       run;  
    
  proc sort data= ResampledEM; 
       by T; 
  run; 
 
 proc means data=ResampledEM std; 
     title "initial standard deviations"; 
     by T; 
     var Response; 
     ods output Summary=sumary1; 
 run; 
  
proc transpose data=sumary1 out=Transposesumary1; 
run; 
  
data Transposesumary1; 
set Transposesumary1; 
if _name_ = "T" then delete; 
drop _label_ _name_; 
run; 
 
data _null_; 
  set Transposesumary1; 
  call symput('OutSTD',col1); 
  call symput('Exp1STD',col2); 
  call symput('Exp2STD',col3); 
  call symput('Exp3STD',col4); 
run; 
 
data ResampledEM; 
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  set ResampledEM; 
  ScaledResponse=.; 
  if T=0 then  ScaledResponse=Response/&OutSTD; 
  if T=1 then  ScaledResponse=Response/&Exp1STD; 
  if T=2 then  ScaledResponse=Response/&Exp2STD; 
  if T=3 then  ScaledResponse=Response/&Exp3STD; 
run; 
 
 
 
proc sort data= ResampledEM; 
  by &id T; 
run; 
 
proc mixed data=ResampledEM method=ml covtest ; 
       title "Starting Values"; 
       class &id T ; 
       model ScaledResponse  = T  &covariates / noint s; 
       repeated T /subject=&id  type=un  ; 
       ods output CovParms=StartCovarP(keep = estimate )  ; 
run;  
 
proc transpose data=StartCovarP out=TransposeStartCovarP; 
run; 
   
data _null_; 
  set TransposeStartCovarP; 
  col11=(col2+col4+col7)/3; 
  call symput('par1',col1); 
  call symput('par2',col2); 
  call symput('par3',col3); 
  call symput('par4',col4); 
  call symput('par5',col5); 
  call symput('par6',col6); 
  call symput('par7',col7); 
  call symput('par8',col8); 
  call symput('par9',col9); 
  call symput('par10',col10); 
  call symput('SigXY',col11); 
run;  
 
proc mixed data=ResampledEM method=ml covtest ; 
       title "Improve Starting Values"; 
       class &id T ; 
       model ScaledResponse  = T  &covariates / noint s; 
       repeated T /subject=&id  type=&type ldata=&LinCovParms; 
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       parms (&par1) (&par3) (&par5) (&par6) (&par8) (&par9) (&par10) (&SigXY); 
       ods output CovParms=CovarP(keep = estimate )  ; 
       ods output SolutionF=fixedF(keep = estimate )  ; 
  run;  
 
  proc transpose data=CovarP out=transpCovarP; 
  run;  
 
   
 
 
data _NULL_; 
     set transpCovarP; 
  newcol3=col3/(sqrt(col2)*sqrt(col4)); 
  newcol6=col6/(sqrt(col7)*sqrt(col4)); 
  newcol5=col5/(sqrt(col2)*sqrt(col7)); 
  newcol1=col1*(&OutSTD**2); 
  newcol2=col2*(&Exp1STD**2); 
  newcol4=col4*(&Exp2STD**2); 
  newcol7=col7*(&Exp3STD**2); 
     call symput('varY',newcol1); 
     call symput('varX1',newcol2); 
     call symput('varX2',newcol4); 
     call symput('varX3',newcol7); 
     call symput('X1X2',newcol3); 
     call symput('X2X3',newcol6); 
     call symput('X1X3',newcol5); 
     call symput('ConstCor',col8); 
  run; 
  
 
%let i=1; 
%do %until(&criterion lt 0.0000001); 
 
data ResampledEM; 
  set ResampledEM;  
  if T=0 then  ScaledResponse=Response/sqrt(&varY); 
  if T=1 then  ScaledResponse=Response/sqrt(&varX1); 
  if T=2 then  ScaledResponse=Response/sqrt(&varX2); 
  if T=3 then  ScaledResponse=Response/sqrt(&varX3); 
run; 
 
  proc mixed data=ResampledEM method=ml covtest ; 
       title "Iteration number  &i "; 
       class &id T ; 
       model ScaledResponse  = T  &covariates / noint s OUTPRED=predictions_1; 
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       repeated T /subject=&id  type=&type ldata=&LinCovParms; 
       parms (1) (1) (&X1X2) (1)  (&X1X3) (&X2X3) (1) (&ConstCor) / hold=1,2,4,7; 
       ods output CovParms=CovarP(keep = estimate )  ; 
       ods output SolutionF=fixedF(keep = estimate )  ; 
  run;  
 
  data predictions_1; 
  set predictions_1;  
  NewProd=Resid*ScaledResponse; 
  run; 
 
   
proc sort data=predictions_1; 
  by T; 
  run; 
 
  proc means data=predictions_1; 
  by T; 
  Var NewProd; 
  ods output Summary=sumNewProd(keep =  NewProd_Mean); 
  run;  
 
  proc transpose data=sumNewProd out=transpsumNewProd; 
  run;  
    
  data transpsumNewProd; 
     set transpsumNewProd; 
  YVariance= col1 * &varY  ; 
  X1Variance= col2 * &varX1  ; 
  X2Variance= col3 * &varX2; 
  X3Variance= col4 * &varX3; 
  keep  YVariance X1Variance X2Variance X3Variance; 
  run; 
 
  data _NULL_; 
     set transpsumNewProd; 
  call symput('varY' ,YVariance); 
  call symput('varX1',X1Variance); 
  call symput('varX2',X2Variance); 
  call symput('varX3',X3Variance); 
  run; 
 
proc means data=predictions_1; 
  Var NewProd; 
  ods output Summary=NewProd(keep =  NewProd_Mean); 
  run;  
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  data _NULL_; 
     set NewProd; 
  criterion = abs(NewProd_Mean - 1); 
     call symput('criterion',ROUND(criterion, 0.000000001)); 
  run; 
 
   proc print; 
   title "The criterion is: &criterion"; 
   run; 
 
 %let i= %eval(&i + 1); 
 %end;  
 
   proc print data=transpsumNewProd; 
   title "Converged in &i iterations. The final criterion is: &criterion"; 
   title2 "The error variances are:"; 
   run; 
 
  proc transpose data=CovarP out=transpCovarP; 
  run;  
 
  data transpCovarP; 
    set transpCovarP; 
 
    vary=&varY;  varx1=&varX1; varx2=&varX2; varx3=&varX3;  corryx =col8;  
 
    covx1x2=col3*sqrt(varx1)*sqrt(varx2); 
    covx1x3=col5*sqrt(varx1)*sqrt(varx3); 
    covx2x3=col6*sqrt(varx2)*sqrt(varx3); 
 
 covyx1=corryx*sqrt(vary)*sqrt(varx1); 
 covyx2=corryx*sqrt(vary)*sqrt(varx2); 
 covyx3=corryx*sqrt(vary)*sqrt(varx3); 
 
    drop _name_ col1-col8;  run; 
 
 data _null_; 
    set transpCovarP; 
    call symput('covx1x2',covx1x2); 
    call symput('covx1x3',covx1x3); 
    call symput('covx2x3',covx2x3); 
    call symput('covyx1',covyx1); 
 call symput('covyx2',covyx2); 
    call symput('covyx3',covyx3); 
  run; 
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  proc mixed data=ResampledEM method=ml  ; 
       title "Final Likelihood (constrained)"; 
       class &id T ; 
       model Response  = T  &covariates / noint s  ; 
       repeated T /subject=&id  type=un; 
       parms (&varY)  
             (&covyx1) (&varX1)  
             (&covyx2) (&covx1x2) (&varx2)  
             (&covyx3) (&covx1x3) (&covx2x3) (&varx3) / hold=1,2,3,4,5,6,7,8,9,10; 
       ods output SolutionF=redonefixedeffects(keep = estimate )  ; 
    ods output FitStatistics=FitConstrained; 
 
  run;  
 
    proc mixed data=ResampledEM method=ml  ; 
       title "Final Likelihood (un constrained)"; 
       class &id T ; 
       model Response  = T  &covariates / noint s  ; 
       repeated T /subject= &id  type=un; 
     ods output FitStatistics=FitUnConstrained; 
    run;  
  
data CompareFit; 
   merge FitConstrained(rename= value=ConstrainedModel) FitUnConstrained(rename= value=UNConstrainedModel); 
      LRTStat= .; 
      if Descr="-2 Log Likelihood" then LRTStat= ConstrainedModel - UNConstrainedModel ; 
   pvalue=1-probchi(LRTStat,2); 
run; 
 
proc print data=comparefit; 
title "Constrained vs Unconstrained model"; 
title2 "test of equal association between exposure and outcome across windows"; 
run; 
 
data _null_; 
set  CompareFit; 
if Descr ne "-2 Log Likelihood" then delete; 
     call symput('LRTStat',LRTStat); 
     call symput('LRTpvalue',pvalue); 
  run; 
 
proc transpose data=fixedF out=transpfixedF; 
  run;  
 
  data transpfixedF; 
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      set transpfixedF; 
   muy=col1*sqrt(&varY); 
   mux1=col2*sqrt(&varX1); 
   mux2=col3*sqrt(&varx2); 
   mux3=col4*sqrt(&varx3); 
   drop _name_ col1-col4; 
  run; 
 
 
  data &out; 
     merge transpCovarP transpfixedF; 
  beta11=covyx1/varx1; 
  beta12=covyx2/varx2; 
  beta13=covyx3/varx3; 
 
  beta01=muy - beta11*mux1; 
  beta02=muy - beta12*mux2; 
  beta03=muy - beta13*mux3; 
 
  col5=col5*sqrt(&varY); 
  col6=col6*sqrt(&varY); 
  col7=col7*sqrt(&varY); 
  col8=col8*sqrt(&varY); 
  col9=col9*sqrt(&varY); 
  col10=col10*sqrt(&varY); 
  col11=col11*sqrt(&varY); 
 
  LRTStat=&LRTStat; 
  LRTpvalue=&LRTPvalue; 
     run; 
  
  proc datasets; 
    delete CovarP fixedF transpfixedF transpCovarP ResampledEM; 
 run; 
 
%mend MultipleInformantMLEConstraints; 
 
 


